POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

COURSE DESCRIPTION CARD - SYLLABUS

Course name

Modern methods of research materials [S1IMat1>NMBM]

Course			
Field of study Materials Engineering		Year/Semester 3/5	
Area of study (specialization)		Profile of study general academic	
Level of study first-cycle		Course offered in Polish	
Form of study full-time		Requirements compulsory	
Number of hours			
Lecture 15	Laboratory classe 15		Other (e.g. online) 0
Tutorials 0	Projects/seminars 0	6	
Number of credit points 2,00			
Coordinators dr hab. inż. Adam Piasecki adam.piasecki@put.poznan.pl		Lecturers	

Prerequisites

Basic knowledge of chemistry, physics, materials science. Logical thinking, use of the information obtained from the library and the Internet. Understanding the need for learning and acquiring new knowledge.

Course objective

Knowing the modern methods of testing materials

Course-related learning outcomes

Knowledge:

1. students should describe the basic methods for testing the properties of materials. - $[k_w08, k_w11]$ 2. students should describe the construction of modern machines and equipment for material testing. - $[k_w11]$

Skills:

1. the student is able to propose appropriate methodology for testing materials. - [k_u01, k_u05, k_u10]

2. the student is able to conduct research. - [k_u08, k_u18]

3. the student is able to analyze test results - [k_u01, k_u05, k_u08]

Social competences:

1. the student is able to work in a group - [k_k03]

2. the student is aware of the importance of modern methods of researching materials in the modern economy and for society - $[k_k02]$

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Learning outcomes presented above are verified as follows:

Lecture: - credit on the basis of a test consisting of both open and test questions carried out at the end of the semester.. Scale of estimate: 51-60% - dst(C), 61-70% - dst+(C+), 71-80% - db(B), 81-90% - db+(B+), 91-100% - bdb(A).

Laboratory classes: evaluation of students knowledge necessary to prepare, and carry out the lab tasks and evaluation of reports.

Programme content

Lecture: Testing methods to assess physical and mechanical properties of materials. Testing methods to assess microstructure: optical microscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, testing methods to assess material surfaces. Testing methods to assess the chemical and phase composition of materials. Calorimetric methods. Tribology. Laboratory classes: 1. Scanning electron microscopy. 2.EDS X-ray microanalysis. 3. Atomic force microscopy. 4. Dilatometric method. 5. Differential scanning calorimetry. 6. Tribological research.

Course topics

none

Teaching methods

multimedia presentations

Bibliography

Basic

1. Kubiński W., Wybrane metody badania materiałów. Badanie metali stopów. Wyd. PWN. 2020.

2. Barbacki A. (red.), Metody i techniki strukturalnych badań metali, Wyd. Politechniki Poznańskiej, Poznań 1994.

Additional

1. Barbacki A. (red.), Mikroskopia elektronowa, Wyd. Politechniki Poznańskiej, Poznań 2005. 2. Kurzydłowski K., Lewandowska M., Nanomateriały inżynierskie konstrukcyjne i funkcjonalne,Wyd. PWN. 2010.

Breakdown of average student's workload

	Hours	ECTS
Total workload	60	2,00
Classes requiring direct contact with the teacher	34	1,00
Student's own work (literature studies, preparation for laboratory classes/ tutorials, preparation for tests/exam, project preparation)	15	1,00